Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

William T. A. Harrison, ${ }^{\text {a }}{ }^{*}$

H. S. Yathirajan, ${ }^{\text {b }}$ A. Mithun, ${ }^{\text {c }}$ B. Narayana ${ }^{c}$ and B. K. Sarojini ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, ${ }^{\mathbf{b}}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ${ }^{\text {'D Department of Chemistry, }}$ Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.081$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-[4-(Methylsulfanyl)phenyl]-1-(4-nitrophenyl)-prop-2-en-1-one

The geometrical parameters for the title compound, $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$, are normal. The non-centrosymmetric crystal packing, which is consistent with the non-zero second harmonic generation response, may be influenced by a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction.

Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing studies (Harrison et al., 2005, 2006) of the non-linear optical (NLO) properties and crystal structures of chalcone derivatives. It is known that substitution at either benzene ring of the chalcone skeleton substantially affects the optical response (Uchida et al., 1998) and we are now exploring the role of the methylsulfanyl $\left(\mathrm{H}_{3} \mathrm{CS}-\right)$ substituent (Butcher et al., 2006) in this process.

(I)

The non-centrosymmetric polar space group of (I) is consistent with its significant second harmonic generation (SHG) response of 0.6 times that of urea (Watson et al., 1993). The geometrical parameters for (I) fall within their expected ranges (Allen et al., 1987). The molecule of (I) is distinctly twisted about the $\mathrm{C} 6-\mathrm{C} 7$ and the $\mathrm{C} 9-\mathrm{C} 10$ bonds (Table 1). The dihedral angle between the benzene ring mean planes (C1-C6 and C10-C15) in (I) is 45.84 (4) $)^{\circ}$, which is significantly smaller than the equivalent value of $68.15(6)^{\circ}$ in 2-bromo-1-(4-methylphenyl)-3-[4-(methylsulfanyl)phenyl]prop-2-en-1one (Butcher et al., 2006). The nitro group in (I) is well ordered and makes a dihedral angle of $12.94(15)^{\circ}$ with respect to the $\mathrm{C} 10-\mathrm{C} 15$ benzene ring. The C 16 methyl group is almost in the plane of the C1-C6 benzene ring [deviation $=$ 0.049 (4) $\AA]$.

A PLATON (Spek, 2003) analysis of the crystal structure of (I) indicates a possible intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction (Table 2) that might help to establish the crystal packing (Fig. 2). The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction forms extended chains of molecules propagating along [001]. Adjacent chains form pseudo-layers in (100), with all the molecules oriented in the same sense with respect to the polar axis.

Experimental

To a mixture of 4-(methylsulfanyl)benzaldehyde $(1.52 \mathrm{~g}, 0.01 \mathrm{~mol})$ and 4-nitroacetophenone ($1.65 \mathrm{~g}, 0.01 \mathrm{~mol}$) in ethanol (5 ml), a

Received 11 September 2006
Accepted 12 September 2006
solution of potassium hydroxide $(5 \%, 5 \mathrm{ml})$ was added slowly with stirring. The mixture was stirred at room temperature for 24 h . The precipitated solid was filtered off, washed with water, dried and recrystallized from an acetone-toluene ($1: 1 \mathrm{v} / \mathrm{v}$) solvent mixture (yield 86%; m.p. 409 K). Analysis for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$ found (calculated) (\%): C 64.15 (64.20), H 4.32 (4.38), N 4.66 (4.68).

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$
$M_{s}=299.33$
Orthorhombic, $A B a 2$
$a=13.7388$ (4) \AA
$b=33.5802(8) \AA$
$c=5.9538$ (2) \AA
$V=2746.80(14) \AA^{3}$

Data collection

Nonius KappaCCD diffractometer ω and φ scans
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.936, T_{\text {max }}=0.993$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035\)
\(w R\left(F^{2}\right)=0.081\)
\(S=1.06\)
3173 reflections
191 parameters
H -atom parameters constrained
```

$Z=8$
$D_{x}=1.448 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K Kadiation
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
Plate, yellow
$0.28 \times 0.24 \times 0.03 \mathrm{~mm}$

27858 measured reflections 3173 independent reflections 2811 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.063$
$\theta_{\text {max }}=27.6^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0338 P)^{2}\right. \\
& +1.763 \mathrm{P} \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.29 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1416 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.04 \text { (8) }
\end{aligned}
$$

Figure 1
Molecular structure of (I) showing 50\% displacement ellipsoids (arbitrary spheres for the H atoms).

Figure 2
Part of a (100) sheet of molecules in (I) with $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions shown as dashed lines.

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection. BKS thanks AICTE, Government of India, New Delhi, for financial assistance under the 'Career Award for Young Teachers' scheme.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1-19

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. \& Narayana, B. (2006). Acta Cryst. E62, o1659-o1661.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. \& Anilkumar, H. G. (2005). Acta Cryst. C61, o728-o730.
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. \& Vijaya Raj, K. K. (2006). Acta Cryst. E62, o1578-o1579.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. \& Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.
Watson, G. J. R., Turner, A. B. \& Allen, S. (1993). Organic Materials for Nonlinear Optics III, edited by G. J. Ashwell \& D Bloor. RSC Special Publication No. 137, pp 112-117. Cambridge: Royal Society of Chemistry.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

